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Annulus with Spiral Slits Map and its Inverse of
Bounded Multiply Connected Regions

1,2Ali W. Kareem Sangawi, 3Ali H.M. Murid

Abstract:- This paper presents a boundary integral equation method for computing numerical conformal mapping of bounded multiply connected region
onto an annulus with spiral slits region and its inverse. The method is an extension of the author’s method for computing the Annulus with circular slits
map of bounded multiply connected regions (see [Sangawi, A. W. K., Murid, A. H. M., Nasser, M. M. S.: Annulus with circular slit map of bounded
multiply connected regions via integral equation method. Bull. Malays. Math. Sci. Soc. (2) 35, no. 4, 945–959 (2012)]). Several numerical examples are
given to prove the effectiveness of the proposed methods.

Index Terms— Numerical conformal mapping; Multiply connected regions; Generalized Neumann kernel.

1 Introduction

NEHARI and Wen [1–3] described the numbers of canonical
regions of conformal mapping. Recently, reformulations

of conformal mappings from bounded and unbounded multi-
ply connected regions onto the five canonical slit regions as
Riemann-Hilbert problems are discussed in Nasser [4–6]. An
integral equation with the generalized Neumann kernel is then
used to solve the RH problem as developed in [7]. A bound-
ary integral equation method for mapping a bounded multiply
connected region onto an annulus with circular slits region has
been presented in [8]. And this result is extended by presenting
a boundary integral equation method for numerical conformal
mappings from a bounded multiply connected region onto an
annulus with spiral slits region. The proposed method is based
on linear boundary integral equation with adjoint generalized
Neumann kernel which is constructed from a boundary rela-
tionship satisfied by an analytic function on a bounded multi-
ply connected region.

Recently, in our several papers we have constructed new
linear boundary integral equations for conformal mapping of
bounded multiply region onto canonical slit regions [8–12], the
first two papers regards to annulus and disk with slits are im-
proves the work of Murid and Hu [13, 14].

The plan of the paper is as follows: Section 2 presents some
auxiliary materials. Section 3 presents a method to calculate
the piecewise real function h j and υ j. Section 4 presents the
derivations of two integral equations related to S′, S(t), r j and
then f , respectively. In Section 5, we give some examples to
illustrate our boundary integral equation method. Finally, Sec-
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tion 6 presents a short conclusion.

2 Notations and Auxiliary Materials
Let Ω be a bounded multiply connected region of connectivity
M+1. The boundary Γ consists of M+1 smooth Jordan curves
Γ j, j = 0,1, . . . ,M as shown in Figure 1.

Figure 1 Mapping of the bounded multiply connected region Ω of
connectivity M+1 onto an annulus with spiral slits

The curve Γ j is parametrized by 2π-periodic twice continu-
ously differentiable complex function z j(t) with non-vanishing
first derivative

z′j(t) = dz j(t)/dt �= 0, t ∈ Jj = [0,2π] , j = 0,1, . . . ,M.

The total parameter domain J is the disjoint union of M +1
intervals J0, . . . ,JM . We define a parametrization z(t) of the
whole boundary Γ on J by

z(t) = z j(t), t ∈ Jj, j = 0,1, . . . ,M. (1)

Let H∗ be the space of all real Hölder continuous 2π-
periodic functions ω(t) of the parameter t on Jj for j =
0,1, . . . ,M, i.e.

ω(t) = ωk(t), t ∈ Jj, j = 0,1, . . . ,M.
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The unknown function S(t) and R(t) (a piecewise constant real
function) will be given for t ∈ J by

S(t) = S j(t) and R(t) = R j(t), t ∈ Jj, j = 0,1, . . . ,M.

Suppose that c(z), Q(z) and H(z) are complex-valued func-
tions defined on Γ such that c(z) �= 0, H(z) �= 0 , Q(z) �= 0 and
H(z)/(T (z)Q(z)) satisfies the Hölder condition on Γ . Then
the interior relationship is defined as follows:

A complex-valued function P(z) is said to satisfy the inte-
rior relationship if P(z) is analytic in Ω and satisfies the non-
homogeneous boundary relationship

P(z) = c(z)
T (z)Q(z)

G(z)
P(z)+H(z), z ∈ Γ, (2)

where G(z) analytic in Ω, Hölder continuous on Γ, and G(z) �=
0 on Γ. The boundary relationship (2) also has the following
equivalent form:

G(z) = c(z)T (z)Q(z)
P(z)2

|P(z)|2 +
G(z)H(z)

P(z)
, z ∈ Γ. (3)

The following theorem gives an integral equation for an ana-
lytic function satisfying the interior non-homogeneous bound-
ary relationship (2) or (3), [10].

Theorem 2.1 If the function P(z) satisfies the interior non-

homogeneous boundary relationship (2) or (3), then

P(z)+PV
∫

Γ
K(z,w)P(w)|dw|+c(z)T (z)Q(z)

×
[

∑
a j insideΓ

Res
w=a j

P(w)
(w− z)G(w)

]conj

= −T (z)Q(z) L−
R (z), z ∈ Γ,

(4)
where

K(z,w) =
1

2πi

[
c(z)T (z)Q(z)

c(w)(w− z)Q(w)
− T (w)

w− z

]
, (5)

L−
R (z) =

−1
2

H(z)
Q(z)T (z)

+PV
1

2πi

∫
Γ

c(z)H(w)
c(w)(w− z)Q(w)T (w)

dw.

(6)

The symbole “conj” in the superscript denotes complex conju-

gate, while the minus sign in the superscript denotes limit from
the exterior. The sum in (4) is over all those zeros a1,a2, . . . ,aM

of G that lie inside Ω . If G has no zeros in Ω , then the term
containing the residue in (4) will not appear.

3 Compute the piecewise real function
h j and υ j

Let Â(t) be a complex continuously differentiable 2π-periodic
function for all t ∈ J. The generalized Neumann kernel formed
with Â is defined by

N̂(t,s) =
1
π

Im
(

Â(t)
Â(s)

z′(s)
z(s)− z(t)

)
,

N̂(t, t) =
1
π

(
1
2

Im
z′′(t)
z′(t)

− Im
Â′(t)
Â(t)

)
.

Define also the kernel M̂ by

M̂(t,s) =
1
π

Re
(

Â(t)
Â(s)

z′(s)
z(s)− z(t)

)
,

which has a cotangent singularity type (see [7] for more detail).
The adjoint function to the function Â is given by

Ã(t) =
z′(t)
Â(t)

.

The generalized Neumann kernel Ñ(s, t) formed with Ã is
given by

Ñ(t,s) =
1
π

Im
(

Ã(t)
Ã(s)

z′(s)
z(s)− z(t)

)
.

Then

Ñ(s, t) = −N∗(s, t),

where N∗(s, t) = N̂(t,s) is the adjoint kernel of the generalized
Neumann kernel N̂(s, t) (see [7] for more detail). We define
the Fredholm integral operator N∗ by

N∗ψ(t) =
∫

J
N∗(t,s)ψ(s)ds, t ∈ J.

It is known that λ = 1 is an eigenvalue of the kernel N̂ with
multiplicity 1 and λ =−1 is an eigenvalue of the kernel N̂ with
multiplicity M +1 [7]. The eigenfunctions of N̂ corresponding
to the eigenvalue λ = −1 are

{
χ [0],χ [1], . . . ,χ [M]

}
, where

χ [ j](ξ ) =
{

1, ξ ∈ Γ j,
0, otherwise, j = 0,1, . . . ,M.

Then, we define the space Ŝ by

Ŝ = span{χ [0],χ [1], . . . ,χ [M]}. (7)

We also define an integral operator J by (see [9])

Jυ =
∫

J

1
2π

M

∑
j=1

χ [ j](s)χ [ j](t)υ(s)ds, (8)

Ĵυ =
∫

J

1
2π

M

∑
j=0

χ [ j](s)χ [ j](t)υ(s)ds, (9)
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The following theorem gives us a method for calculating the
piecewise real function,h and υ in canonical slit representation,
hence r and υ̂ , respectively. This theorem can be proved by
using the approach as in Theorem 5 in [15].

Theorem 3.1 The function γ,μ ∈ H∗ and h,υ ∈ Ŝ such that

Âĝ = γ +h+ i(μ +υ) (10)

are boundary values of an analytic function ĝ(z) in Ω. Then

the function h = (h0,h1, . . . ,hm) and υ = (υ0,υ1, . . . ,υm) are

given by

h j = (γ,φ [ j]) =
1

2π

∫
Γ

γ(t)φ [ j](t)dt, (11)

υ j = (μ,φ [ j]) =
1

2π

∫
Γ

μ(t)φ [ j](t)dt, (12)

where φ [ j] is solution of the following integral equation

(I+N∗ + Ĵ)φ [ j] = −χ [ j], j = 0,1, . . . ,m. (13)

4 An Annulus with Spiral Slits Region
This canonical region consist of an annulus centered at origin
a together with M − 1 to the logarithmic spirals. Let f (z) be
the mapping function that maps a bounded multiply connected
region onto the canonical region. We assume that f (z) maps
the curve Γ0 onto a unit circle | f (z)| = 1, the curve Γ1 onto
the circle | f (z)| = R1 and the curves Γ j, j = 2,3, . . . ,M onto
logarithmic spiral slit

Im
(

e−θ j log f (z j(t))
)

= R j, j = 2,3, . . . ,M, (14)

where R1,R2, . . . ,RM are undetermined real constants, and
θ j, j = 2,3, . . . ,M is called as oblique angle of (14), represents
the angle of intersection between the logarithmic spiral and ray
emanating from origin, θ j are given real constant. We choose
θ0 = θ1 = π/2, then the boundary values of the mapping func-
tion f (z) satisfies

B log f (z(t)) = r(t)+ iS(t), (15)

where,

B = ei(π/2−θ j) and r j =

⎧⎨
⎩

lnR0 = 0, j = 0,
lnR1, j = 1,
−R j, j = 2,3, . . . ,M.

(16)

The mapping function f (z) can be uniquely determined by
assuming f (0) > 0, then the mapping function can be ex-
pressed as [6]

f (z) = c

(
1− z

z1

)
ezĥ(z), (17)

where h(z) is an analytic function and c = f (0) is an undeter-
mined real constant, z1 is a prescribed point inside ΓM .

Let F(z) = eB log( f (z)) = er+iS(t) and then

F ′(z j(t)) = iS
′
j(t)F(z j(t)), j = 0,1, ...,M. (18)

Note that from (18) and using the fact that T (z) =
z′(t)
|z′(t)| can

be shown that

F(z j(t)) =
|F(z j(t))|

i

|S′
j(t)|

S
′
j(t)

T (z j(t))
F ′(z j(t))
|F ′(z j(t))| ,

j = 0,1, . . . ,M.

(19)

Note that F(z) can be written in the following form

F(z) = eB log(z1−z)eBĝ(z), (20)

where ĝ(z) = zĥ(z)+ log(c)− log(z1), and then

D(z) =
F ′(z)
F(z)

=
[

Bĝ′(z)− B

z1 − z

]
, is analytic in Ω (21)

Note that the value of S
′
j may be positive or negative since

each slit f (Γp) is traversed twice. Thus
|S′

p|
S
′
p

= ±1. Hence the

boundary relationship (19) can be written as

F(z j(t)) = ±|F(z j(t))|
iT (z j(t))

F ′(z j(t))
|F ′(z j(t))| , j = 0,1, . . . ,M. (22)

To eliminate the ± sign, we square both sides of the bound-
ary relationship (22), Yields

F(z)2 = −|F(z)|2T (z)2 F ′(z)2

|F ′(z)|2 , z ∈ Γ. (23)

Combining (21) and (23), we obtain

D(z) = −T (z)2D(z), z ∈ Γ (24)

By using the definition of F(z), (23) becomes

F(z)2 = −e2r j T (z)2 F ′(z)2

|F ′(z)|2 , z ∈ Γ. (25)

By taking logarithmic on both sides of (20), we obtain

log(F(z(t)) = B lnc+B log
(

z1 − z(t)
z1

)
+Bz(t)ĥ(z(t)). (26)

And from the definition of F(z), we obtain

log(F(z j(t)) = r j + iS j(t), (27)
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where r0 = 0, r1 = lnR1, rk = −Rk, k = 2, 3, . . . , M, then

Bk̂(z(t)) = r j + iS j(t)−Re
(
B lnc

)− i Im
(
B lnc

)
−B log

(
z1 − z(t)

z1

)
= r j + i(ρ(t)+ υ̂(t))−Re

(
B lnc

)− i Im
(
B lnc

)
−B log

(
z1 − z(t)

z1

)
= γ(t)+h(t)+ i(ρ(t)+ μ(t)+υ(t)),

(28)

where γ(t) = Re
(
−B log

(
z1 − z(t)

z1

))
, μ(t) =

Im
(
−B log

(
z1 − z(t)

z1

))
, h(t) = r j − Re

(
B log(c)

)
and

υ(t) = υ̂(t)− Im
(
B log(c)

)
.

By obtaining h j, j = 0,1, . . . ,M, from (11) we obtain

c = e
−h0

sinθ0 , (29a)

and

r j = h j +Re
(
B log(c)

)
, j = 1,2, . . . ,M. (29b)

Note that from (17) can be shown that∣∣∣∣ f ′(z)
f (z)

∣∣∣∣ l(z) =
f ′(z)
f (z)

|l(z)| , (30)

where l(z) = zĥ′(z) + ĥ(z)− 1
z1 − z

, is analytic in Ω. Square

both sides of the above boundary relationship using (15) and

the fact that T (z) =
z′

|z′| , Yields

l(z) = −BT (z)2B l(z), z ∈ Γ, (31)

Comparison (31) and (2) leads to a choice of P(z) = l(z),
Q(z) = T (z)B, C(z) = −B, G(z) = 1, and H(z) = 0, Theo-
rem 2.1, yields

l(z)+PV
1

2πi

∫
Γ

[
B(z)T (z)2B(z)

B(w)(w− z)T (z)B(w)
− T (w)

w− z

]

×l(w)|dw| = 0,

(32)

After some algebraic manipulation and using the fact that BB =
1, Obtain the following Integral equation

B(z)l(z)T (z)+PV
1

2πi

∫
Γ

[
B(z)T (z)

B(w)(z−w)
− B(z)T (z)

B(w)(z−w)

]

×B(w)l(w)T (w)|dw| = 0

(33)

In the above integral equation let z = z(t) and w = z(s). Then
by multiplying both sides of (33) by |z′(t)| and using the fact
that

l(z j(t))z′j(t)B(z j(t)) = iS
′
j(t), j = 0,1, . . . ,M,

the above integral equation can also be written as

S
′
j(t)+

∫
J

N̂(s, t)S
′
j(s)ds = 0, j = 0,1, . . . ,M.

Since N̂∗(s, t) = N̂(t,s), the integral equation can be written as
an integral equation in operator form

(I+ N̂∗)S
′
j = 0, j = 0,1, . . . ,M, (34)

where λ = −1 is an eigenvalue of N̂∗ with multiplicity M by
Theorem 12 in [7]. By using the fundamental theorem [16,
p.164] and using the fact that T (w) |dw| = dw, gives
∫
−Γ j

1
2π

T (w)
F ′(w)
F(w)

|dw| =
{

i, j = M,
0, j = 1,2, . . . ,M−1,

(35)

which implies that

JS
′
j = (0, . . . ,0,−1), j = 1,2, . . . ,M. (36)

By adding (36) to (34), we obtain the equation

(I+ N̂∗ +J)S
′
= φ̂(t), (37a)

where

φ̂(t) = (0, . . . ,0,−1). (37b)

In view of the following theorem, the integral equation (37) is
uniquely solvable (see [9]).

Theorem 4.1

Null(I+ N̂∗ +J) = {0}. (38)

Notice that the function S j(t) for j = 0,1, . . . ,M, can be calcu-
lated from S′j(t) by

S j(t) =
∫

S′j(t)dt +υ j =: ρ j(t)+υ j, t ∈ Jj, (39)

where υ j is undetermined real constant and the real function
ρ j(t) is defined by

ρ j(t) =
∫

S′j(t)dt, t ∈ Jj. (40)

The unknown function S j(t) is not necessary a 2π-periodic.
However, it’s derivative S′j(t) is 2π-periodic. Thus, the func-
tion S′j(t) can be represented by a Fourier series

S′j(t) = a
[ j]
0 +

∞

∑
k=1

a
[ j]
k coskt +

∞

∑
k=1

b
[ j]
k sinkt, t ∈ Jj. (41)

Hence the function ρ j(t) can be calculated by Fourier series
representation as

ρ j(t) = a
[ j]
0 t +

∞

∑
k=1

a
[ j]
k

k
sinkt −

∞

∑
k=1

b
[ j]
k

k
coskt, t ∈ Jj. (42)
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By solving the integral equation (37) we get S′j(t). And
solving the integral equation (13) we get φ [ j], j = 0,1, . . . ,M,
which gives h j through (11) which in turn gives c and r j

through (29). By solving (41) and (42) we get the value of
ρ through (12) we get the value of υ j which in turn gives υ̂ j

The approximate boundary value of f (z) is given by

f (z j(t)) = eB(r j+i(ρ j(t)+υ̂ j(t))), j = 0,1, . . . ,M. (43)

The approximate interior value of the function f (z) is calcu-
lated by the Cauchy integral formula

f (z) =

∫
Γ

f (w)
w−z dw∫

Γ
1

w−z dw
, z ∈ Ω. (44)

The integrals in the numerators has the advantage that the de-
nomenator in this formula compensates for the error in the nu-
merator (see [17]). The integrals in (44) are approximated by
the trapezoidal rule.

For computing the inverse maps, noted that the mapping
function f−1(w) = z is analytic in the region annulus with spi-
ral slit with a simple pole at w = c. Let an analytic function
φ(w) be defined as

φ(w) = (w− c)z = (w− c) f−1(w)

Then by using Cauchy integral formula, we obtain z ∈ Ω by

z =
1

(w− c)2πi

∫
J

( f (z(t))− c)z(t)
f (z(t))−w

BiS′(t) f (z(t))dt

5 Numerical Examples
Since the function zp(t) is 2π-periodic, a reliable procedure for
solving the integral equations (37) and (13) numerically is by
using the Nyström’s method with the trapezoidal rule [18]. The
trapezoidal rule is the most accurate method for integrating pe-
riodic functions numerically [19, pp.134-142]. The algebraic
linear systems is uniquely solvable for sufficiently large num-
ber of collocation points on each boundary component, since
the integral equations (13) and (37) are uniquely solvable [20].
The computational details are similar to [4, 5, 13, 14].

For numerical experiments, we have used some test regions
with smooth and non-smooth boundaries of connectivity three,
four, seven and ten based on the examples given in [4, 6]. All
the computations were done using MATLAB R2011a. The
number of points used in the discretization of each boundary
component Γ j is n. The test regions and their corresponding
images are shown in Figures 2-7.

Example 5.1 Consider the region bounded by three ellipses

given in Nasser [4]:

Γ0 : {z(t) = 10cos t +6isin t},
Γ1 : {z(t) = −4−2i+3cos t −2isin t},
Γ2 : {z(t) = 4+2cos t −3isin t}, 0 ≤ t ≤ 2π,

z1 = 4, θ =
(

π
2

,
3π
4

,
π
2

)
.

Figure 2 shows the region and its image, and Figure 3 shows

the annulus with spiral slit and its inverse image based on our

method. See Table 1 for comparison between our computed

values of c and Ri, i = 1,2 with those computed values of

Nasser [6]

Figure 2 Mapping a region of connectivity three onto an annulus
with spiral slit.
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Figure 3 Inverse image of the annulus with spiral slit.

Table 1 Radii comparison for Example 5.1 with [6]

n 32 64 128
‖c− cN‖∞ 7.6(−07) 7.0(−12) 8.8(−16)

‖R1 −RN1‖∞ 4.3(−06) 4.4(−10) 6.6(−16)
‖R2 −RN2‖∞ 1.5(−06) 3.8(−10) 2.2(−16)

Example 5.2 Consider the region of connectivity seven and

ten, [6],

z j(t) = ξ j + eiσ j(a j cos t + ib j sin t), j = 0,1, . . . ,9, (45)

The values of the complex constants ξ j and the

real constants a j, b j and σ j are as in Table 2

and the values of z1 = −0.8330 − i2.1650 and

θ =
(

π
2

,
π
2

,
π
4

,0,
π
4

,0,
π
2

,
2π
3

,
5π
3

,
3π
2

)
. Mapping func-

tion from the original region onto the annulus with spiral

slits region and the inverse mapping functions from the

annulus with spiral slits region onto the original region. The

numerical results are presented in Figures 4–7. See Tables

3 and 4 for comparison between our computed values of c and

Ri, i = 1,2, . . . ,6 with those computed values of Nasser [6]

and computed values of c and Ri, i = 1,2, . . . ,9.
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Table 2 The values of constants a j, b j, ξ j and σ j in (5.2).

j a j b j ξ j σ j

0 4.0000 3.0000 −0.5000− i0.5000 1.0000
1 0.2976 −0.6132 −0.8330− i2.1650 5.7197
2 0.5061 −0.6053 −1.7059+ i0.3423 0.5778
3 0.6051 −0.7078 0.3577− i0.9846 4.1087
4 0.7928 −0.3182 1.0000+ i1.2668 2.6138
5 0.3923 −0.4491 −1.9306− i1.0663 4.4057
6 0.3626 −0.1881 0.1621+ i0.5940 3.3108
7 0.2126 −0.1281 2.1621− i0.1940 1.3108
8 0.1026 −1.0881 −2.2621− i2.6040 0.3108
9 0.4026 −0.1481 −0.7621+ i1.2940 0.8108
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1

Figure 4 Mapping a region of connectivity seven onto an annulus
with spiral slits.
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Figure 5 Inverse image of the annulus with spiral slits.
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Figure 6 Mapping a region of connectivity ten onto an annulus with
spiral slits.

Example 5.3 Consider a region Ω bounded by four rectan-
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Figure 7 Inverse image of the annulus with spiral slits.

Table 3 Radii comparison for Example 5.2 with [6]

n 32 64 128
‖c− cN‖∞ 1.0(−06) 1.7(−12) 4.4(−16)
‖R1 −RN1‖∞ 1.2(−07) 2.3(−13) 5.2(−16)
‖R2 −RN2‖∞ 2.5(−06) 4.5(−12) 1.1(−16)
‖R3 −RN3‖∞ 2.9(−07) 6.7(−13) 2.4(−16)
‖R4 −RN4‖∞ 1.3(−06) 2.3(−12) 2.7(−16)
‖R5 −RN5‖∞ 2.3(−06) 3.8(−12) 1.3(−15)
‖R6 −RN6‖∞ 1.7(−06) 2.4(−12) 1.6(−16)

Table 4 The numerical values of c, Ri, i = 1, . . . ,9 for Example 5.2.

n 32 64 128
c 0.6468127386 0.6467702190 0.6467709323

R1 1.0000000000 1.0000000000 1.0000000000
R2 0.6586525858 0.6584912008 0.6584906527
R3 −0.1624735970 −0.1622552127 −0.1622552041
R4 0.1879050402 0.1877504175 0.1877503706
R5 0.9591057560 0.9577764470 0.9577732112
R6 0.2081809532 0.2086356775 0.2086342427
R7 0.1107244198 0.1129461207 0.1129518147
R8 0.4205292167 0.4196782143 0.4196760538
R9 −0.2372178130 −0.2372480822 −0.2372476284

gles,

Γ0(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

t −4−3i, 0 ≤ t ≤ π
2

,

4−
(

11− 16t

π

)
i,

π
2
≤ t ≤ π,

−16t

π
+20+5i, π ≤ t ≤ 3π

2
,

−4+
(

29− 16t

π

)
i,

3π
2

≤ t ≤ 2π,

Γs(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1− 4t

π
− i, 0 ≤ t ≤ π

2
,

−1+
(

4t

π
−3

)
i,

π
2
≤ t ≤ π,

4t

π
−5+ i, π ≤ t ≤ 3π

2
,

1+
(

7− 4t

π

)
i,

3π
2

≤ t ≤ 2π,

Γ1(t) = −1.5+ i+Γs,
Γ2(t) = 1.5−1.2i+Γs,
Γ3(t) = 1.5+2i+Γs,
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We choose the value of θ j, j = 0,1,2,3 to be θ =
(π/2,π/3,0,π/2), and z1 = 1.5 + 2i. Mapping function from

the original region onto the annulus with spiral slits region

and the inverse mapping functions from the annulus with spi-

ral slits region onto the original region. The numerical results

are presented in Figures 8–9.
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Figure 8 Mapping a region with non-smooth boundaries onto the
annulus with spiral slits for Example 5.3.
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Figure 9 Inverse image of the annulus with spiral slits for
Example 5.3.

6 Conclusions

In this paper, we have constructed new boundary integral
equations for conformal mapping of multiply connected
regions onto an annulus with spiral slits region. We have
also constructed a new method to find the values of modulus
of f (z). The advantage of our method is that our boundary
integral equations are all linear and can be used for the region
with smooth and non-smooth boundaries. Several mappings
of the test regions of connectivity three, seven and ten with
smooth boundaries and connectivity four with non-smooth
boundaries were computed numerically using the proposed
method. After the boundary values of the mapping function
are computed, the interior mapping function are calculated
by the means of Cauchy integral formula. And the inverse
mapping function from annulus with spiral slits region onto
the original regions are computed. The numerical examples
presented have illustrated that our boundary integral equation
method has high accuracy.
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